

Bauxite Residue Handling Practice and Valorisation research in Aluminium of Greece

Efthymios Balomenos Residue Valorization Mytilineos S.A.- Metallurgy Business Unit

METALLURGY BUSINESS UNIT

Aluminium of Greece

- ➤ The leading industrial producer of alumina and aluminium in S.E. Europe and the only vertically integrated bauxite, alumina and aluminium production plant in Europe
- ➤ Mining 650,000 tons of Greek bauxite ore, processing each year more than 1.4 million tons of Greek bauxite ore and 0.4 million tons of tropical bauxite ore.
- ➤ Producing **820,000 tons** of alumina (out of which 480,000 tons are exported)
- ➤ Producing **185,000 tons** of aluminium (out of which 125,000 tons are exported)

The AoG Alumina Refinery

60% Al₂O₃ Digestion 20% Fe₂O₃ 15% H₂O

1,800,000 t/year

5% Other oxides

AoG processes (mainly) Greek Bauxite

The ore is digested under high temperature and pressure in alkaline solution

Precipitation

99% Al₂O₃

Alumina

precipitates from the alkaline "pregnant" solution

Alumina

800,000 t/year

Bauxite Residue (BR)

750,000 t/year

The undissolved portion of the ore, forms the Bauxite Residue (BR) by-product

METALLURGY BUSINESS UNIT

AoG Vision for Red Mud

To remove the water content from the slurry so:

- ➤ It can be safely deposited in-land in full accordance with EC waste directives.
- ➤ It can be **easily transported** in other industrial facilities **for re-use**.
- 2006: Installation of 1st
 Filterpress .
- 2007: Pilot tests- Automation and improvements.
- 2008: Installation of 2nd Filterpress, storage site.
- 2009: Installation of 3rd and 4th Filterpress - gradual increase of operations.
- 2012 today: 100% dry disposal of all bauxite residue produced from the alumina refinery.

The Filter-Press Process

Bauxite Residue discharged with moisture between 26-28%

Filtrate is returned to washers, and re-introduced to the Bayer cycle

METALLURGY BUSINESS UNIT

Dewatering takes place in 30 min cycles

Filtrate $\sim 1.200 \text{ km}^3/\text{y}$

Recycled to the alumina plant

To storage site

BR 750 kt/y (dry basis)

METALLURGY BUSINESS UNIT

The BR storage site is located just behind the plant (St. Athanasios).

Storage takes place in accordance to obtained environmental permit and geotechnical study

METALLURGY BUSINESS UNIT

Central pipeline

Peripheral draining channels

Geofabric and gravel introduced at specific height intervals to enhance stability

METALLURGY BUSINESS UNIT

- ☐ Currently 7 plateau active with heights 9-15 m.
- □ The site contains over 4,5 million tons of BR already.
- Estimated to be in operation for another 20 years.

RESEARCH ACTIVITIES IN RESIDUE VALORIZATION

METALLURGY BUSINESS UNIT

CEMENT

Since 1991, AoG BR was been tested for use in

- Cement Industry (iron/alumina source in clinker)
- Brick/Tile Industry (substitution of clay)
- Geopolymer bricks
- Soil Remediation/ Vegetation cover
- Road Base Construction
- Landfill barrier / cover
- Backfilling of closed Mines

Geopolymers

METALLURGY BUSINESS UNIT

BR Utilization In Cement Production

- BR can substitute up to 5-10% of the cement raw material feed as iron and alumina sources.
- ☐ The installed production capacity of the Greek cement industry could utilize all 750,000 t of BR produced in AoG with a 5% substitution in the raw meal
- □ Up till now AoG BR bas been used at rates of 1.5 3% substitution.
- □ The past 5 years, 10- 30 kt of BR were used in Greek cement plants annually.

This year

- theTITAN plant in Patra,
- the AGET plant in Volos,
- the VASILIKO plant in Cyprus

will utilize in total 110,000 t of BR or 15% of the annual BR produced in AoG

Next year we will reach 20%

Why not more ? – Key Barriers

Technical Barriers

Soda content, Cr content, moisture are the most common technical barriers, yet none of them is crucial.

Legislative Barriers

EWC code 01 03 09 = waste/non-hazardous

EC waste transport legislation is a complicated process requiring specific permits from all parties involved. Cross boarder transport even more complicated.

There is no classification for BR only for red mud.

Financial Barriers

Logistics is a key issue. Cement plants are willing to utilize BR only as long at is a cheaper alternative to other iron and alumina sources.

Social Barriers

Local Societies are always eager to protest against cement plants treating wastes 'in their backyard'.

BR handling during unloading and mill feeding is the biggest issue as any potential dusting of the BR would create significant protests by local societies.

Why not more? – Lifting Barriers

Technical Barriers

Air drying to further reduce moisture, De-alkalization of BR, ...

Legislative Barriers

EWC code 01 03 09 = waste/non-hazardous

Once there is an 'industrial- use' for a waste it could be classified as a by-product, simplifying the transfer process. Waste Declassification is a central policy decision.

Financial Barriers

Incentives should be provided to the cement and other plants for utilizing BR and similar wastes. **Gate fees do not promote industrial symbiosis.**

Social Barriers

More effort should be placed on increasing social awareness – reducing NIMBYSM. 'Popularizing science' through RTD projects could be a key.

METALLURGY BUSINESS UNIT

In all these cases BR:

- Are used as substitutes of cheap and available raw materials (soil, clay, iron oxide...)
- Are not the main component but ratter an additive in small amounts (1-30% wt)

There is need for new BR-centered processes that can be technically and financially viable

Geopolymers

The ENEXAL BR Treatment Process

- 2012: Electric Arc Furnace and Melt Fiberizing unit installed in AoG Pilot Plant
- During a two-year long experimental campaigns treated more than 30 t of BR
- More than 5 t of Pig Iron produced and tested in secondary steel production
- High Quality mineral wool product produced from the slag (zero waste process)

Conclusions from ENEXAL

- ☑ The revenues of pig iron and mineral wool could match and exceed the operational cost of the unit
- ☑ Pig iron revenues alone would only cover up to 35% of operational costs
- ☑ The mineral wool market is limited in size (60,000 -100,000 t) and could not absorb the mineral wool that would be produced from a full BR processing (>300,000 t of slag)

> Produce more products to achieve a viable process

BAUXITE RESIDUE, GREECE

ALUMINIUM OF GREECE

Industrial by-product of primary aluminium industry

More than 700,000 t produced annually in Greece and stored near the plant 0.14% TREO including Sc (Potential global Sc resource)

The amount of REE present in the Bauxite Residue produced annually in Greece, amounts to nearly the 10% of the annual European demand

,Y,,ZrSi,O,,(OH),,Cl,,

THE KVANEFJELD **DEMONSTRATION LINE:**

BENEFICIATION PI

TREASURE FROM WASTE

METALLURGY BUSINESS UNIT

EURARE Project: REE Leaching from BR (NTUA)

Bauxite Residue²

SiO ₂	6.54%
Al_2O_3	12.27%
Fe ₂ O ₃	56.11%
CaO	0.06%
TiO ₂	7.51%
LOI	7.82%

Mud2Metal: Holistic Valorization of BR

- 100% utilization of the BR stream
- ✓ Economically Viable
- ✓ Near Zero-Waste
- ✓ Industrial Symbiosis

METALLURGY BUSINESS UNIT

METALLURGY BUSINESS UNIT

THE ECONOMY OF Sc

Al - Sc 2%

100 - 150 \$/kg

Sc VALUE CHAIN: 0.9 \$/g

Sc₂O₃ 99%

5 \$/g

Sc₂O₃ 99,99%

ScF3 99,99%

253 \$/g

206 \$/g

Sc Metal

METALLURGY BUSINESS UNIT

Sc+Al

Sc is an "exotic" REE produced in minor quantities –not traded as a commodity

Sc can 'substitute' Y in many material applications achieving superior results:

 In SOFC Sc-stabilized Zirconia has lowered operational temperatures leading to commercialization of the technology

Sc drastically improves Aluminium alloy properties increasing strength, corrosion resistance, allowing welding and others

The Al-Sc-Mg alloy powder is used in additive layer manufacturing (3D printing) by AIRBUS

APWorks, 2 December 2015

"We did produce 122 out of the 162 parts on our M400 out of SCALMALLOY®.

The partition weights a massive 45% less than current Airbus A320 partition designs"

METALLURGY BUSINESS UNIT

SCALE: AN RTD PROJECT DEDICATED IN DEVELOPING A NOVEL Sc SUPPLY CHAIN

Horizon 2020

4 year project

€ 7,000,000.00

AoG demo plant

EU MARKET POTENTIAL

- Alumina Sector: up to 500 t/y of Sc
- Titania Sector: up to 140 t/y of Sc

Newsflash: Sc now included on the 2017 list of Critical Raw **Materials for the EU**

SCALE RAW MATERIAL SOURCES

AoG Bauxite Residue:

AOS Bauxite Residue:

TRONOX acid waste filter cake:

SCALE:

Production of
Sc compounds &
Sc-Al alloys from
European metallugrical
by-products

II-VI

SSZ LAYER

SOLID OXIDE

METALLURGY BUSINESS UNIT

mg/kg Extracting Sc from Resource

g/kg

CRITICAL TECHNOLOGICAL BARRIER

 extracting Sc from low grade and complicated resources /by-products Breakthrough Technologies

Scandium processing chain

Refining Sc compounds

ESTABLISHED TECHNOLOGIES

- Multi stage S-X processing
- Use of HF(g)

99.999%

Sc Metal / Alloy production

CRITICAL MARKET BARRIER

- High processing costs
- Small production scales

METALLURGY BUSINESS UNIT

Positive resutls from SIR ion-exchange resin to extract Sc from dilute solutions produced

- Direct molten salt electrolytic production of Al-Sc Alloy from $Sc_2O_3 - Al_2O_3$ mixtures

Room temperature electrowining of Sc in ionic liquids from ScCl₃

Development of new methodologies for InDustrial CO2-freE steel pRoduction by electroWINning

Upscaling ULCOWIN technology for CO₂-Free Steel production

METALLURGY BUSINESS UNIT

Development of new methodologies for InDustrial CO2-freE steel pRoduction by electroWINning

- ☐ Iron metal electrolytically produced from iron oxide without direct involvement of carbon or fossil fuels.
- ☐ Powered by RES cell with expert system to operate non-continuous according to RES real time availability
- Ambient temperature operation
- Soda as electrolyte
- ☐ Study for use low grade/alternative iron ores like Bauxite residue and Bauxite ore

METALLURGY BUSINESS UNIT

BR Electrolysis experiments @ NTUA

SEM-EDS

NaOH/H2O + BR T = 110 °C

Duration = 2h

RE: Pt pseudoreference Cathode: Stainless Steel

Anodes: Nickel Current: 1A

Cathode after electrolysis

METALLURGY BUSINESS UNIT

ITRB

ENSUREAL: Integrated cross-sectorial approach for environmentally sustainable and resource-efficient alumina production

Revisit the 'Pedersen' process for extracting Al and Fe from lower grade bauxites and BR

Pilot Scale tests at AoG

NTNU

SINTEF

AdMiRIS

METALLURGY BUSINESS UNIT

METALLURGY BUSINESS UNIT

METALLURGY BUSINESS UNIT

Removing the waste streams from the primary Aluminum production in Europe

METALLURGY BUSINESS UNIT

Aluminum production in Europe creates 6,850kt of bauxite residue (red mud) yearly

is Europe stuck in the mud

near zero-waste processing, near break-even flowsheets

RemovAL builds on the results of 9 recent research projects

METALLURGY BUSINESS UNIT

METALLURGY BUSINESS UNIT

de-alkanization

Demonstrate at pilot scale the de-alkalization technology to remove alkali content from bauxite residue at levels below 0.5% wt, making it suitable for various applications

At least 40 t of bauxite residue will be processed by AAL at a mobile pilot plant in IRELAND

METALLURGY BUSINESS UNIT

Demonstrate the use of processed bauxite residue as green soil stabilizer for civil works applications, though the stabilization of bauxite residue with other industrial by products

At least 800 t of bauxite residuewill be processed and used by ACCIONA as a raw material for the construction of a road in Spain

green soil stabilizer

METALLURGY BUSINESS UNIT

Demonstrate at pilot scale the production of lightweight aggregates and high performance binders, through different thermal treatments of bauxite residue

lightweight aggregates & high performance binders

At least 10 t of bauxite residue will be processed in the RIO TINTO Pilot plant in France

Demonstrate at pilot scale the production of ferro-silicon alloy from Electric Arc Furnace (EAF) co-processing of bauxite residue with other industrial by-products, like Spent Pot Lining (SPL) form aluminium primary production

ferro-silicon alloy

At least 50 t of Bauxite Residue will be processed in the AoG Pilot plant in Greece and in the ELKEM pilot plant in Norway

METALLURGY BUSINESS UNIT

microwave furnace

Demonstrate at a prototype microwave furnace the production of metallic iron from processing bauxite residue with other industrial by-products

At least 250 kg of Bauxite Residue will be processed in CEINNMAT's mobile prototype plant in both Spain and Greece

METALLURGY BUSINESS UNIT

hydrometallurgy

Demonstrate the production of REE concentrate, Ga concentrate, alumina/soda solution and rutile concentrate from the hydrometallurgical processing of engineered slags/sinters produced in RemovAL pyrometallurgical pilot plants. Ga is co-extracted both from the slag and the Bayer liquor

At least 500 kg of slag and 100 lt of Bayer liquor will be processed at RWTH/MEAB pilot plant in Germany

METALLURGY BUSINESS UNIT

Demonstrate the production of new, marketable building products from the building materials produced in the pilot demonstrations

A demo house 25 m² will be built exclusively with bauxite residue building products in the housing settlement next to the AoG alumina plant

METALLURGY BUSINESS UNIT

feasibility studies

for each of the 3 alumina producers and the 1 legacy site owner, detailing the optimum processing flow sheet for valorising the produced bauxite residue along with other industrial by-products, taking into consideration:

- waste characteristics
- logistics and
- symbiosis with other plants in the geographical vicinity

METALLURGY BUSINESS UNIT

policy recommendation

communication to stakeholders

technology deployment

social engagement

METALLURGY BUSINESS UNIT

www.removal-project.com

The research leading to these results has been performed within the REMOVAL project and received funding from the European Community's Horizon 2020 Programme (H2020/2014-2020) under grant agreement n° 776469.

Bauxite Residue A future valuable mineral resource

The research leading to these results has received funding from the European Union Seventh Framework Programme and H2020

Thank you for your attention

Deep Sea Port

Combined Heat and Power Plant

Aluminium Smelter

ENEXAL Pilot plant

Alumina Refinery

