UTILISING RED MUD AS AN OXYGEN CARRIER AND CATALYST FOR CHEMICAL LOOPING GASIFICATION TO PRODUCE HYDROGEN-RICH SYNGAS

Jinhua Bao, Liang Kong, Zhen Fan, Heather Nikolic, and Kunlei Liu
Center for Applied Energy Research
University of Kentucky
2540 Research Park Drive
Lexington, KY 40511-8410
Clean Coal and CCS

- About 30 researchers
- 7 active projects sponsored by DOE and industrial consortia
- 10-18 peer reviewed publications, annually
- 5-10 proposal submitted, annually
CLC Principle

- In-situ oxygen separation instead of stand alone air separation units
- Generate high purity CO\textsubscript{2} stream at the fuel reactor exhaust

Slow Gasification

Catalyst-Oxygen Carrier

- Oxygen & heat carrier (Reactivity, oxygen transport) capacity
- Production cost
- Stability, agglomeration, sintering, attrition
Why Red Mud – The Properties

Physical Characteristics

Particle size: **80% particles <10μm**
Concentration: **50-65%**
pH: 12-13.5 (need neutralization)

Chemical Composition (Dry)

- **Fe₂O₃**: 30%-60%
- **Al₂O₃**: 10%-20%
- **SiO₂**: 3%-50%
- **TiO₂**: 2%-25%
- **Na₂O**: 2%-10%
- **CaO**: 2%-8%

Active composition
Support
Bonding

Direct Granulation (spray dry method)
Calcination
Cost-effective OC

No mechanical grinding & slurry preparation needed
No additive needed
The Effectiveness of Red Mud

Graphs and Figures:*

- **Graph 1:** Comparison of reduction rate (%/min) over cycle number for different oxygen carriers.
 - Reference OC (FeO/AlO = 50/50)
 - RM OC (calcinated at 1100°C)

- **Graph 2:** RCOC conversion over time for different oxygen carriers.
 - Fe-Al OC
 - Fe-Al-Ce OC
 - Red mud OC
 - Ilmenite OC

- **Graph 3:** Test conditions for EKY Char Gasification with Sand:
 1. Mass of OCs or sand: 300 g
 2. Temperature: 950°C
 3. Mass of EKY coal char: 2 g
 4. Steam concentration in reduction: 50 vol%

- **Graph 4:** Conditions for CLC with Char (Steam Gasification Agent - 50 vol%):
 1. Bed material: Red Mud OC or Sand (215 g)
 2. Solid fuel: 2 g PRB char
 3. Temperature: 950°C

- **Graph 5:** Instantaneous rate of conversion (g/g/s) for different processes:
 - Char Combustion
 - Char Pyrolysis
 - Steam Gasification of Char (50 vol% water vapor)
 - CLC with Char (Steam Gasification Agent - 50 vol%)
 - Solid (Char) - Solid (OC) Contact Reaction (N2 Fluidizing Gas)
 - Red Mud OC Reduction by 20 vol% CO

- **Tables:**
 - Reduction Rate (%/min) over cycle number for different oxygen carriers.
 - EKY Char Gasification with Sand results.

- **Images:**
 - SEM images of red mud at different scales (5μm and 1μm).
RM Cyclic Performance

Gas concentration

Conditions:
1. Bed material: SRM 100g
2. Solid fuel: 2.4 g WKY700
3. Temperature: 950 °C
4. Fluidizing agent: 50 vol% Water Vapor

Carbon conversion

Conditions:
1. Bed material: SRM 100g
2. Solid fuel: 2.4 WKY(700)
3. Temperature: 950 °C
4. Fluidizing agent: 50 vol% Water Vapor

- Porous structure well maintained after 20 cycles
- No agglomeration detected

Fresh

Post run

PSD
Catalytic Function for In-situ WGS

Gas residence time: 6s (973 K)
Inlet gas: 10% CO + 30% Steam

\[
\log J_{eq} = -2.4198 + 0.0003855T + \frac{2180.6}{T}
\]
Trial Run

Raw Material -> Fire in Kiln -> Clinker -> Crush Sieve -> OC Product
Calcine Temp. in Rotary Kiln

<table>
<thead>
<tr>
<th>Temperature</th>
<th>1200°C</th>
<th>1250°C</th>
<th>1300°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength (N)</td>
<td>1.60</td>
<td>2.76</td>
<td>3.10</td>
</tr>
<tr>
<td>Bulk Density (kg/m³)</td>
<td>-</td>
<td>1493.4</td>
<td>1719.6</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
<td>~10.5</td>
</tr>
</tbody>
</table>
Crystal Phase Formation

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200°C</td>
<td>Fe₂O₃</td>
</tr>
<tr>
<td>1250°C</td>
<td>Fe₂O₃</td>
</tr>
<tr>
<td>1300°C</td>
<td>Fe₂O₃</td>
</tr>
<tr>
<td></td>
<td>Al₂O₃</td>
</tr>
<tr>
<td></td>
<td>FeAl₂O₄</td>
</tr>
<tr>
<td></td>
<td>FeAl₂O₄</td>
</tr>
<tr>
<td></td>
<td>SiO₂</td>
</tr>
<tr>
<td></td>
<td>Fe₃(Al₀.₂Fe₁.₈)(SiO₄)₃</td>
</tr>
<tr>
<td></td>
<td>Fe₃Al₂(SiO₄)₃</td>
</tr>
</tbody>
</table>

Almandine

- Very hard
- Dark red
- Melting point: 1250°C

Reactivity with CO and Char

950°C, 20% CO

OC 50 g
EKY Char 0.2 g
950°C, 50 vol.% WV

OC Conversion

Char Conversion

Time (min)
Grindability Comparison

OPC

<table>
<thead>
<tr>
<th>Grind Time (min)</th>
<th><125 um (g)</th>
<th>125-500 um (g)</th>
<th>>500 um (g)</th>
<th>Total Before Sieve (g)</th>
<th>Total After Sieve (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>15</td>
<td>253</td>
<td>246</td>
<td>1</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>30</td>
<td>341</td>
<td>159</td>
<td>0</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>45</td>
<td>399</td>
<td>101</td>
<td>0</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>60</td>
<td>443</td>
<td>56</td>
<td>0</td>
<td>499</td>
<td>499</td>
</tr>
<tr>
<td>75</td>
<td>470</td>
<td>29</td>
<td>0</td>
<td>499</td>
<td>499</td>
</tr>
<tr>
<td>90</td>
<td>488</td>
<td>11</td>
<td>0</td>
<td>499</td>
<td>499</td>
</tr>
<tr>
<td>105</td>
<td>496</td>
<td>3</td>
<td>0</td>
<td>499</td>
<td>499</td>
</tr>
<tr>
<td>120</td>
<td>497</td>
<td>1</td>
<td>0</td>
<td>498</td>
<td>498</td>
</tr>
</tbody>
</table>

RM

<table>
<thead>
<tr>
<th>Grind Time (min)</th>
<th><125 um (g)</th>
<th>125-500 um (g)</th>
<th>>500 um (g)</th>
<th>Total Before Sieve (g)</th>
<th>Total After Sieve (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>15</td>
<td>54</td>
<td>101</td>
<td>344</td>
<td>499</td>
<td>499</td>
</tr>
<tr>
<td>30</td>
<td>116</td>
<td>167</td>
<td>214</td>
<td>497</td>
<td>497</td>
</tr>
<tr>
<td>45</td>
<td>197</td>
<td>239</td>
<td>60</td>
<td>496</td>
<td>496</td>
</tr>
<tr>
<td>60</td>
<td>279</td>
<td>217</td>
<td>0</td>
<td>496</td>
<td>496</td>
</tr>
<tr>
<td>75</td>
<td>354</td>
<td>141</td>
<td>0</td>
<td>495</td>
<td>495</td>
</tr>
<tr>
<td>90</td>
<td>449</td>
<td>46</td>
<td>0</td>
<td>495</td>
<td>495</td>
</tr>
<tr>
<td>105</td>
<td>486</td>
<td>8</td>
<td>0</td>
<td>494</td>
<td>494</td>
</tr>
<tr>
<td>120</td>
<td>493</td>
<td>1</td>
<td>0</td>
<td>494</td>
<td>494</td>
</tr>
</tbody>
</table>
Fuel Flexibility

Proximate Analysis

<table>
<thead>
<tr>
<th>Coal Char</th>
<th>A</th>
<th>M</th>
<th>V</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRB</td>
<td>16.28</td>
<td>-</td>
<td>3.13</td>
<td>72.22</td>
</tr>
<tr>
<td>WKY</td>
<td>14.72</td>
<td>-</td>
<td>4.34</td>
<td>77.73</td>
</tr>
<tr>
<td>EKY</td>
<td>15.92</td>
<td>-</td>
<td>4.33</td>
<td>78</td>
</tr>
</tbody>
</table>

Ultimate Analysis

<table>
<thead>
<tr>
<th>Coal Char</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>N</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRB</td>
<td>77.4</td>
<td>1.38</td>
<td>1.52</td>
<td>1.72</td>
<td>1.79</td>
</tr>
<tr>
<td>WKY</td>
<td>76.74</td>
<td>1.84</td>
<td>2.55</td>
<td>1.67</td>
<td>2.48</td>
</tr>
<tr>
<td>EKY</td>
<td>78.26</td>
<td>1.67</td>
<td>1.38</td>
<td>1.75</td>
<td>1.02</td>
</tr>
</tbody>
</table>

- Red mud demonstrated stable performance on different types of coal chars
- Gasification rate: PRB > WKY > EKY
Conclusions

- Red mud is proven to be an effective oxygen carrier and catalyst for the CLG process. Stable reactivity is observed within 20 cycles. It also shows a good fuel selectivity.
- Gasification rate of char can be enhanced approximately by 1.5-3 times in the bed of red mud.
- Fabrication of red mud oxygen carriers via rotary kiln proves an effective and cost-efficient method.
- RM produced by rotary kiln displays a similar reactivity to RM synthesized by traditional freezing granulation method.
- The cost of RM produced by rotary kiln is estimated to be approximately $113/ton.
Acknowledgements

- **DOE/NETL**
 - Steven Markovich

- **CMRG**
 - Duke Energy
 - LG&E and KU Energy
 - EPRI

- **CAER**
 - Jacob Blake
 - Zhen Fan
 - Liang Kong
 - Heather Nikolic
 - Lisa Richburg
 - Steve Summers
 - Amanda Warriner
 - Jimin Zeng